
1 Introduction

Beneath the Arctic ocean lie vast quantities of untapped oil and natural gas reserves.
The U.S Geological Survey (USGS) estimates that the region is home to 13% of
world’s undiscovered oil reserves, and 30% of world’s untapped natural gas reserves
[7]. The tight global energy market coupled with the existence of such large reservoirs
have peeked interest of the neighboring countries in exploration of the reserves.

Recovery of the oil and gas from reserves that lie beneath the sea require construc-
tion of marine pipelines which partly will be submerged beneath the sea surface
with long spans supported on the seabed. Exposure of the pipes to the environment
leads to both man-made and geo-environmental hazards such as dragging of anchors
and cables, thermal buckling, strudel scouring of seabed, and gouging by ice masses.
Although pipelines are more inflexible when compared to alternatives of fluid trans-
portation in tanks, they entail lower operating costs and a lifetime of at least 40 years
[24].

The seabed scouring process (also referred to as seabed gouging, furrowing, plowing,
scoring, scarping, etc) describes the physical interaction that takes place when ice
masses come in contact with the seabed. The interaction produces long gouges and
basin-shaped depressions on the seabed. These are marked features of the shallow
marine shelves [21, 5]. Scouring, however, is not limited to water depths corresponding
to fast ice (up to 27 m). Evidence of the phenomenon is visible in water depths of
100m and more [13].

Gouging events were first discovered in the early 1970s during sonar scans of the
Canadian Beaufort Sea (see [35], Chapter 2). The depths of these gouges were on
average up to 2.5 meters with maximum recorded gouge depths of 4.5 meters. A more
recent study of Canadian Beaufort Sea reported average gouges with depths of 0.3
meters [10], while in [13], the statistical averaging of data collected during a mapping
survey conducted on the Grand Banks in 2004 revealed a mean trench depth of 0.3
meters and width of 31 meters. According to these reports, trenches do not frequently
exceed in depths of 1 meter, and gouges with depths exceeding 1 meter are considered
“extreme events” [2].

When ice masses come in contact with the seabed, they may continue the scouring
process for several kilometers, with a preferred orientation [10, 35], or in other in-
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stances, alternately impacting and rotating free of the seabed [3], producing series
of craters on the seabed. It is generally accepted that the most significant risk to
pipelines in this region are due to effects such ice-features [2]. The forces that the
ridges apply in deeper gouges was estimated to be range 1, 000− 10, 000 tons in [25],
making pipelines vulnerable to severe damage should they come in contact with the
ice masses. The burial of the pipelines within the seabed is deemed to provide the
ideal protection of the pipes against coming in contact with foreign objects [24].

In [25], the seabed response to gouging by ice masses was qualitatively categorized as
three types (see Figure 1.1):

1. Zone I: This is the zone that the ridge actively comes in direct contact with
the soil, resulting in large plastic deformation of the soil. Soil particles are first
push upward forming a soil-mound in front of the soil, and subsequently pushed
to the sides forming the side berms (see Figure 1.2).

2. Zone II: In this region, the soil does not come in direct contact with the ice
mass, but still undergoes large plastic deformation due to large shear forces
created by the ice mass.

3. Zone III: The soil behaves elastically in this region, making it the safest place
to bury pipelines.

Although pipelines are safest in Zone III, the high cost of installation of the pipes
in this zone makes this choice impractical. Instead, it is preferable to have the pipes
buried in Zone II to protect them from coming in direct contact with ridges while
at the same time, prevent excessive pipeline deformation due to large shearing forces
created by the ice masses.

The typical speed of ice masses is thought to be 0.1m/s [26], with mean scour rates
of 2.2 × 10−8 m−2s−1 [13]. Due to the large loading rates the soil experiences, it is
assumed to be loaded in an undrained condition and the continued shear deformation
of the soil takes place without any change in void ratio or any increase in pore-water
pressure [26]. The present study relies on this premise as will be further discussed in
Section 2.

Although evidence of scouring was first observed over four decades ago, there is limited
amount of information available on the active scouring process in the open literature.
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Figure 1.1: Seabed zones distinguished in [25].

Figure 1.2: Seabed scour view from above.
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The ice scouring experiments performed in laboratory settings in [6, 1] and the in-
situ ice-ridge scour done in [16] are some of the few well-documented and publicly
available papers on active scouring processes.

Early efforts of studying and gaining insight into the scouring process by ice masses
have resorted to considering basic failure modes and equilibrium of soil and ice ridges
(see e.g. [25, 6]). More recently, especially the past decade, there has been increased
interest in employing advanced numerical methods for gaining insight into this com-
plex phenomena. Despite the maturity of computational solid mechanics (CSM) and
the successfully proven approaches of modeling soil as a porous medium, numerical
modeling of complex phenomena such as the seabed scouring still faces difficulties.
The two predominant difficulties of taking the conventional approach are the inter-
action between a rigid object, such as an ice-mass and the soil, and the subsequent
large deformation (gouge) induced on and in the soil in the course of such interaction.

The use of arbitrary Lagrangian-Eulerian (ALE) techniques (see e.g. [11, 12]) has been
extensively used in the last four decades for solution of free-surface flow problems (see
e.g. [33, 17]), fluid-structure interaction (FSI) problems (see e.g. [4, 37]), and even in
computational solid mechanics involving large deformations (see e.g. [8, 31]). The use
of ALE methods has become a standard part of major commercially available pack-
ages for solving fluid-structure interaction and large deformation analysis. Previous
numerical modeling of seabed gouging has been performed with commercially avail-
able packages such as LS-DYNA (see e.g. [14, 15]) and ABAQUS (see e.g. [23, 27]).
In such studies, the large deformation in the seabed is accommodated using ALE
techniques combined with re-meshing.

Re-meshing techniques are computationally expensive and their extension to three-
dimensional analysis is far from trivial. In addition to the high computational cost,
the regeneration of computational domains requires remapping of variables between
a hierarchy of meshes, which may possess the added disadvantage of deterioration,
and in extreme cases, lack of convergence to a solution of the nonlinear equations.

In these methods, the object is tracked in a Lagrangian fashion, while the fluid com-
putational domain is allowed to deform and warp such that conformity of meshes
between the fluid and the object is maintained. Such procedures where a body-fitted
mesh discretization evolves with the rigid-object’s motion, suffer from the same is-
sues present in Lagrangian tracking of the soil-object interface: in problems where
the body is subject to large displacements and rotations, there is still need for compu-
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tationally expensive re-meshing of the domain of interest, and inevitably remapping
of variables between meshes.

More recently, [32] described the use of Particle-in-Cell method (PIC) ([9]) for two-
dimensional analysis of the large-displacement gouging process. In this work, we
present an alternative approach for the numerical modeling of the soil gouging pro-
cess by treating the soil as a highly viscous non-Newtonian fluid, thereby converting
deformation to viscous flow.

The contact problem and re-meshing requirements used in classical modeling ap-
proaches can be avoided by recasting the soil-object interaction (SOI) as a fluid-
object interaction (FOI) problem. The idea of approximating soil behavior as a
highly viscous non-Newtonian fluid was successfully tested in [28] for numerical mod-
eling of torpedo anchor installations in seabeds using a finite-volume based commer-
cially available computational-fluid-dynamics (CFD) software. The large rigid-body
displacement of the torpedo anchor, modeled as a rigid-object, was accommodated
using frequent re-meshing of the computational domain.

In this work, we continued this idea of approximating saturated soil as an incompress-
ible viscous fluid, and generalized the formulation to soil-structure/object interaction
in a large-deformation framework. Within this approach, the soil-ridge and the soil-
pipe interactions are treated as fluid-object and fluid-structure interaction problems,
respectively. The arbitrarily large topological changes in the soil are accommodated
by representing the water-soil interface as a single dynamic implicit surface.

2 Constitutive Model for Soil and Fluid

We express the Cauchy stress tensor σf for both the soil and water through the use
of the following simple general nonlinear constitutive equation given by

σf = 2µf (γ̇) ε̇− pI, (2.1)

ε̇ = ∇s
xv

f − 1

3

(
∇x · vf

)
I, (2.2)

γ̇ =
√

2ε̇ : ε̇, (2.3)
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where, ε̇ is the strain-rate tensor, ∇s
x is the symmetric spatial gradient operator, µf

is the dynamic viscosity of the fluids, and γ̇ ∈ [0,∞) is a measure of the strain-rate
tensor. In the definition of the strain-rate tensor, in addition to the spherical part, we
choose to retain the deviatoric portion since it is not identically zero on the discrete
level.

Following [28], we employ the Herschel-Bulkley constitutive model for approximating
the behavior of soil as a fluid. The Herschel-Bulkley model combines the Bingham
plastic model for modeling the plastic forces along with the power-law model to
simulate the strain-rate effect in soil. The Herschel-Bulkley model as a function of
strain-rate can be stated as

µ(γ̇) =

{
τ0
γ̇0

γ̇ ≤ γ̇0
τ
γ̇

γ̇ > γ̇0
, (2.4)

τ = τ0

[
1 + λhb log10

(
γ̇

γ̇0

)]
, (2.5)

where τ0, γ̇0 ∈ (0,∞) are the maximum stress and strain-rates the fluid experiences
in the linear regime, respectively, and λhb ∈ [0,∞) is a dimensionless softening pa-
rameter, with λhb = 0 representing a elastic-perfectly-plastic material. The effect of
this parameter on the stress level is highlighted in Figure 2.1.

In [28], the softening coefficient λhb was calibrated at 0.1 on the basis of laboratory
anchor installation tests performed in [34], and the yield shear strain-rate of the soil
was assumed to be 0.024 1/s, consistent with the yield shear strain-rate in a vane shear
test used for determining the undrained strength of the soil. In this paper, we use
these properties, and further assume that the yield shear-stress is uniform throughout
the domain. It is important to note that while this model simulates reduction in the
shear strength of soil, it is not history-dependent, and cannot predict local hardening
and softening of soil as predicted by soil plasticity models.

2.1 Validation

In order to demonstrate the capability of the numerical framework adopted herein
with soil represented as a viscous fluid, we consider the penetration of a rigid cylinder
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Figure 2.1: Soil constitutive model with selected values of λhb.

into soil. Both analytical plasticity solutions and experimental results are available
for this problem.

We consider the vertical penetration of a rigid cylinder in cohesive soil. Both numer-
ical and experimental data are available for this problem. Upper-bound and lower-
bound plasticity analytical solutions for the bearing capacity of a wished-in-place
(WIP) rigid-cylinder in a perfectly plastic full and half-space have been studied (see
e.g. [22, 18, 29]). In the WIP plasticity solutions, the surface heave formed during
the penetration of the pipe is ignored. Computational results for the WIP problem
were presented in [20], and in [19] the effect of surface heave on the resistance of
put-in-place (PIP) pipes has been studied computationally. Experimental results for
the same problem have been reported in [36].

The soil profile and soil resistance on cylinder after embedment by half a cylinder
diameter is shown in Figure 2.2.
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Figure 2.2: Penetration of a rigid cylinder into soil. left: profile of soil after penetration. right: normalized
resistance versus embedment depth.
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Figure 3.1: Schematics view of ridge and notations.

3 Seabed Gouging Computational Model

The computational model for the two-dimensional analyses (Section 4) is a rectangular
box of dimensions [135 × 25] m2. The pipe considered is 24 inches in diameter and
it is centered at (81.25m, 8.7m). The computational model for the “two-and-a-half”
(Section 5) dimensional analyses is [135× 42] m2 with either an 18- or a 24-inch pipe
centered at (81m, 20.61m).

The ridge, modeled as a rigid object moving with a prescribed velocity vo, has a base
of 10 m, with an attack angle of 33◦. The ridge is initially positioned such that its
base center is −49.25m away from the center line of the pipe, in effect, starting two
ridge-width apart from the pipeline. In all analysis, the ridge is assumed to be fully
submerged in the water to avoid inclusion of the ocean-atmosphere interface.

The ocean water is modeled as an incompressible Newtonian fluid with a mass density
of 1000 kg/m3, with a dynamic viscosity of 0.001 kg/m· s. No special attention is
paid to the turbulence that may take place in water in order to save on computational
resources.

The soil mass density in all studies is assumed to be 1400 kg/m3. The pipeline is
modeled as elastic with a linear elastic modulus of Ep = 210 GPa. In the two-and-
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a-half dimensional stress analysis, the pipeline’s yield stress is assumed to be 358.5
MPa.

The initial gouge profile and embedment of the ridge are such that the ridge is exposed
to soil in the direction of its motion (see Figure 1.1 for an schematic view). Slip
conditions are imposed on the lateral and the top walls (vf · n = 0), and no-slip
condition is imposed on the bottom wall (vf = 0) of the domain. Also, no-slip
conditions are imposed on the ridge and the pipe

4 Seabed Gouging in 2-Dimensions

As two extreme cases, we consider two scenaria for the two-dimensional analysis:
artificially fixed pipe in space, and a floating pipe. For both cases, we consider a soil
with shear strength of 1.725 kPa, and a ridge moving at speed of 0.2 m/s with gouge
depth of 1 meter. The time-history of the forces acting on the pipe relative to the
location of the ridge are shown in Figure 4.1.

The oscillations in the forces are only numerical, caused predominantly by the coarse-
ness of the mesh and the smearing of the fluid and soil properties within a transition
zone.
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Figure 4.1: Components of forces acting on the fixed pipe.
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Figure 4.2: Forces (left) and pipe deflections (right) for the floating pipe.
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As the second extreme case, we consider a free floating pipe with no imposed Dirichlet
boundary conditions on the cross-section of the pipe. In the case of a free-floating
pipe, the inertia of the pipe and the viscosity of the surrounding fluid (soil) render the
problem non-singular. We consider this case as an extreme case, where the stiffness of
the pipe, out-of-plane soil resistance, and the strain(displacement)-driven resistance
of the soil are ignored due to modeling the soil as a viscous fluid. In fact, the only
resistance provided to deformation (rigid or elastic) of a floating pipe is due to the
flow (i.e. viscosity) of the fluid (soil).

The pipe forces and the deflection of a floating pipe are shown in Figure 4.2. It can
be observed in this figure that the pipe undergoes half a meter of vertical and lateral
translation when the center of ridge is 42 meters away from the pipeline. The analysis
is terminated early in this case as this large displacement of the pipeline was deemed
unreasonable and the computational mesh surrounding the pipeline was becoming
exceedingly distorted.

The large vertical motion of the pipeline can be attributed to the buoyancy force
acting on the pipe, which would be offset by the self-weight of the pipe when the pipe
is embedded in the soil by over half of its diameter. In fact, within the time-frame that
this analysis was considered, it was observed that the pipe mostly underwent rigid-
body translation with rotations of about 0.3 degrees, and an out-of-plane moment
(torque) in orders of magnitude of 10−5 N ·m.

5 Coupled Soil-pipe Interaction in “2.5-Dimensions”

The resistance offered by out-of-plane soil has been neglected in the two-dimensional
analyses considered in the previous section. In this section, in addition to the flow
induced viscous forces, discrete linear springs are added to the pipe to simulate the
out-of-plane resistance offered by soil. Furthermore, we neglect the small deformation
of the pipe, and consider it undergoing rigid-body translation to facilitate introduc-
tion of springs (one in each direction) pipe now modeled as a rigid circular section.
Through this approach, which will be referred to as “2.5 dimensional analysis”, we
estimate the three-dimensional behavior while avoiding the very time-consuming 3-
dimensional computing resources required.
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5.1 Effective soil stiffness

The resistance offered by out-of-plane soil in response to deformation, Ksoil, is ap-
proximated by employing empirical force-displacement relations (aka p-y curves, see
e.g. [30]) proposed to correlate the lateral capacity of piles to soil strength.

Consider an elastic beam of infinite length supported on an elastic two-way (linear)
foundation subject to a constant load over length 2a (Figure 5.1). Then, the beam’s
deformation can be analytically computed to be

u1(x) =
w

24EI
x4 + A1x

2 + A2, 0 ≤ x ≤ a (5.1)

u2(x) = −2β

ks
(P1Dβx + βM1Cβx) , a ≤ x <∞ (5.2)

where,

β =

(
k

4EI

)1/4

, (5.3)

Dβx = e−β(x−a) cos (β(x− a)) (5.4)

Cβx = e−β(x−a) [cos (β(x− a))− sin (β(x− a)] (5.5)

P1 = −wa, (5.6)

M1 = −2EIA1 −
w

2
a2, (5.7)

A1 = − 1

2a+ 8β3EI
k

[
2β2a

k
w (βa+ 1) +

w

6EI
a3
]
, (5.8)

A2 = −2β

ks
(P1 + βM1)− A1a

2 − w

24EI
a4 (5.9)

The midpoint displacement of beam then is

u0 := u(0) = A2 = −2β

ks
(P1 + βM1)− A1a

2 − w

24EI
a4 (5.10)

and bending moment of

M0 = 2EIA1. (5.11)
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Then, the equivalent soil resistance due to displacement (as opposed to viscous flow)
is approximated as

Ksoil =
wL

u0
(5.12)

where ks is determined from p-y curves. In this work, we assume that the loaded
length of the pipe, i.e. 2a, is equal to the base of the ridge.
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Figure 5.1: Finite distributed load of magnitude w on an infinite elastic foundation.
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Table 5.1: List of cases considered for the 2.5 dimensional analysis of the seabed
gouging problem.

Group τ0 (kPa) v0 (m/s) D (in)
1 12.5 0.1 18
2 12.5 1.0 18
3 25.0 0.1 18
4 25.0 1.0 18
5 12.5 0.1 24
6 12.5 1.0 24
7 25.0 0.1 24
8 25.0 1.0 24

5.2 Parametric study

Incorporating information from the out-of-plane soil and pipe into the analysis, a
parametric study of the coupled ridge-seabed-pipe interaction is performed. We con-
sider 8 groups (Table 5.1). Each group considered considers four different clear pipe
burial depth of 0.5, 1, 2, and 2.5 pipe diameters (see Figure 3.1).

The displacements and forces acting on the pipe relative to location of the ridge are
shown in Figures 5.2-5.16. In these figures pipe stresses normalized by the yielding
pipe stress (σy = 358.5 MPa) computed from Eq. (5.11) are also shown. Analyses are
run until ridge goes past beyond the buried pipeline. In cases where the computed
pipe stress clearly exceeds the yield stress (σ/σy > 1), the analysis are terminated.
The resultant forces on ridges are processed through a zero-phase digital filtering with
(10 Hz low-pass Butterworth filter).
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Figure 5.2: Group 1 – Forces and stresses acting on pipe
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Figure 5.3: Group 1 – Forces acting on ridge
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Figure 5.4: Group 2 – Forces and stresses acting on pipe
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Figure 5.5: Group 2 – Forces acting on ridge
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Figure 5.6: Group 3 – Forces and stresses acting on pipe.
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Figure 5.7: Group 3 – Forces acting on ridge.
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Figure 5.8: Group 4 – Forces and stresses on pipe.
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Figure 5.9: Group 4 – Forces acting on ridge.
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Figure 5.10: Group 5 – Forces and stresses acting on pipe.
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Figure 5.11: Group 5 – Forces acting on ridge.
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Figure 5.12: Group 6 – Forces and stresses acting on pipe.
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Figure 5.13: Group 6 – Forces acting on ridge.
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Figure 5.14: Group 7 – Forces and stresses on pipe.

30



-600000

-500000

-400000

-300000

-200000

-100000

0

-50 -40 -30 -20 -10 0 10 20

F
or

ce
 (

N
/m

)

xridge - xpipe (m)

Horizontal force on ridge (v = 0.1 m/s, τ0 = 25 kPa, D = 24 in)

B = 0.5 D
B = 1.0 D
B = 2.0 D
B = 2.5 D

-50000

0

50000

100000

150000

-50 -40 -30 -20 -10 0 10 20

F
or

ce
 (

N
/m

)
xridge - xpipe (m)

Vertical force on ridge (v = 0.1 m/s, τ0 = 25 kPa, D = 24 in)

B = 0.5 D
B = 1.0 D
B = 2.0 D
B = 2.5 D

Figure 5.15: Group 7 – Forces on ridge.
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Figure 5.16: Group 8 – Forces and stresses on pipe.
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Figure 5.17: Group 8 – Forces on ridge.
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The components of the ridge forces for Group 7 are shown in Figure 5.15. Assuming
out-of-plane lengths of 10 meters, consistent with the base of the ridge, the horizontal
component of the ridge is in good agreement with those show in Figure 6 in [23].

The maximum lateral pipe displacement of 0.36 meters in Group 7 for a pipe with a
clearance of 1 pipe diameter is comparable to the maximum transverse displacement
of ≈ 0.3 meters obtained in the Wrinkler-type quasistatic analysis performed in [23]
with same soil strength. The maximum Von Mises stress in the same study was
determined to be roughly 320 MPa from a Wrinkler-type analysis, and roughly 260
MPa using the continuum approach described in the same paper. Our results for
Group 7 (1 pipe diameter clearance) predict a maximum stress of 490 MPa.

Finally, the typical seabed profiles at various times for Groups 5, 6, and 7 are shown
in Figures 5.18, 5.19, and 5.20, respectively. These results indicate that the mound
formed in front of the ridge is sensitive to both the soil strength and ridge speed.

6 3-Dimensional Gouging

Using the same constitutive model, we consider the gouging of seabed in three-
dimensions by a square indentor in absence of a buried pipe. The computational
domain is a closed rectangular box, with no-slip conditions imposed on all walls. The
indentor is taken to be cube-shaped with no-slip boundary conditions on its sides.
No pipeline is included in this analysis.

Figure 6.1 shows the profile of the seabed after gouging from various angles. The
qualitative form of the trench created and the side and front mounds are in agreement
with those obtained using classical CSM analysis.

34



60 80 100

15

20

25

30

T =  200.00 s

40 60 80 100

15

20

25

30

35

T =  588.48 s

60 80 100

15

20

25

30

T =  400.00 s

Figure 5.18: Snapshots of the estimated seabed profile for Group 5, B = 1D.
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Figure 5.19: Snapshots of the estimated seabed profile for Group 6, B = 1D.
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Figure 5.20: Snapshots of the estimated seabed profile for Group 7, B = 1D.
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Figure 6.1: Seabed scour profile after scour by a rigid cube-shaped indentor.
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7 Observations and Conclusions

This study presents a novel approach of treating soil as an incompressible viscous fluid
to conduct seabed scour analysis and gain insight in to the coupled ridge-soil-pipe
interaction analysis. Treating the soil as a viscous fluid while capturing the soil profile
facilitates computation of the very large topological changes in the seabed without
the need for computationally expensive remeshing.

Some of the observations from the analysis carried out in this study are as follows:

1. Higher ridge speeds result in higher pipe stresses (for instance, 25% increase in
stresses from Group 5 to Group 6).

2. Increase in loading rate has a bigger effect in subgouge forces for soils with
higher soil strength.

3. Increase in soil strength results in much larger forces on the pipe as pointed out
in [23].

4. Soil strength and ridge speed play a big role in size and shape of the soil mound
formed in front of the ridge.

5. For soil strengths of 12.5 kPa, pipelines 18-inches in diameter are susceptible to
yielding (52 ksi steel) with as much as 2.5 pipe-diameter clear distance to base
of ridge (Groups 1 and 2).

6. For soil strengths of 12.5 kPa and ridge speeds of 0.1 m/s, pipelines 24-inches
in diameter are deemed safe from yielding (52 ksi steel) with clear distances as
low as 0.5 pipe diameter (Group 5).

7. For soil strengths of 12.5 kPa and extreme ridge speeds of 1 m/s, pipelines
24-inches in diameter require minimum clear distance of one pipe diameter
(Group 6, see Figure 5.12) to be safe from yielding.

8. Both 18- and 24-inch pipe diameters are susceptible to yielding (52 ksi steel) in
soil strengths of 25 kPa even with clear distances as much as 2.5 pipe-diameters.
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Cases considered in this study which are comparable to the full-blown three-dimensional
analysis done in [23] are in agreement. There is a need to further validate these nu-
merical results through experimental data obtained through centrifuge tests, reduced-
scale laboratory and in-situ testing.
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